# VITZRO TECH VITZRO NEXTECH



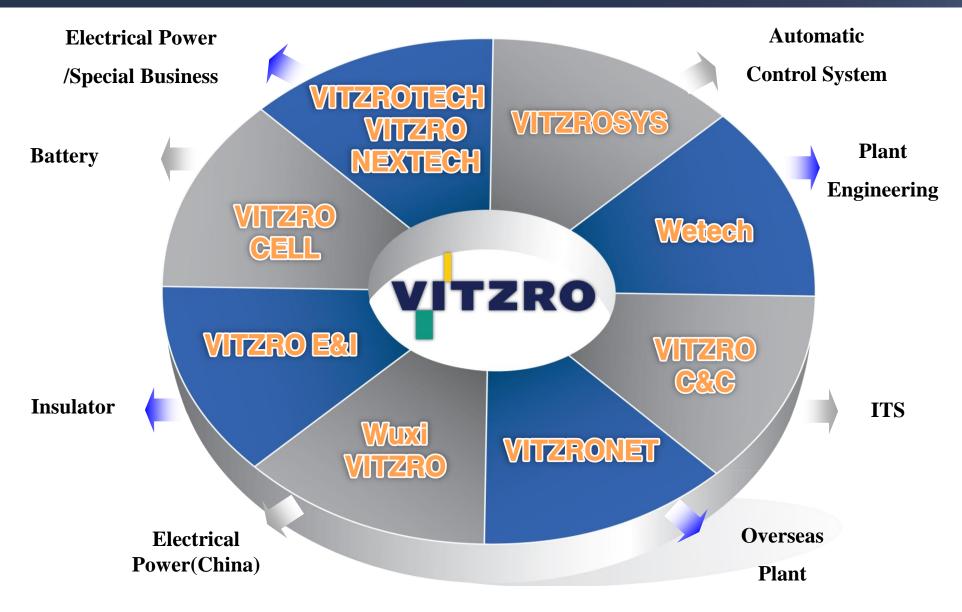








# Company Profile




#### **CONTENTS**

- 1. VITZRO GROUP
- 2. Corporate Status (Vitzro Tech / Nextech)
- 3. Main Business Participation
- 4. R&D Status
- 5. Facility & Certification



# VITZRO GROUP



**♦** Group Turnover : 370million USD

**♦** Number of Employee : 1,270



Company Name VITZROTECH Co.,Ltd

\* VITZRO NEXTECH [Separated in 2017]

• Established Jan 30, 1968

ChairmanSoon sang Jang

• President Byung un Yoo, Sang kweon Lee

Address
 327, Byeolmang-ro, Danwon-gu, Ansan-si,

Gyeonggi-do, 425-833, Korea

Employees 411

• Business Scope Electrical Power, Special product

(Accelerator, Plasma, Aerospace, Vacuum)

• Total Sales 210 million USD

• R&D Center 39 persons (13 doctors)

Special Division 138 persons







#### 1955~1999

with the name of

#### **Kwangmyeong Electronics**

- Vacuum Interrupter
- Insulation
- High Power Breaker
- Power Distribution
- RF Input Coupler (1997)

#### 2000s ~ VITZROTECH

**Listed on KOSDAQ** (Korean Stock Market)

- > Start Accelerator & Nuclear Fusion
  And Aerospace Business
- Manufacture of 350MHz, 2.5MV DTL Proton Accelerator
- Manufacture of High Power RF Klystron Component
- Manufacture of 350MHz, 4MV & 100MeV Proton Accelerator DTL
- Rocket Combustion Chamber & 30Ton Grade Rocket Engine





#### 2010s ~ Total Solution for

#### **Accelerator & Nuclear Fusion**

- 4<sup>th</sup> Generation Photon Accelerator
  - Accelerator Column, Waveguide, Beam Line Component
- Heavy Ion Accelerator
  - SRF Cavity, QWR, HWR, SSR Cryomodule, SSR Cavity
- Nuclear Fusion Device, Facility, Component
  - NBI-I, NBI-II, PFC, Ion Source
- Cryogenic
  - Distribution System (DB Box, Transfer Line, Control)
  - Rocket Engine Combustion Chamber (75ton Grade)



# Main Core Technology [For Accelerator / Nuclear Fusion / Cryogenic / Aerospace]

|   | Item                  | Technology                                                                                                                       | Application                                                                                                                        |
|---|-----------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Machining             | Precision Machining                                                                                                              | Accelerator Components, DTL, Klystron, Rocket Engine                                                                               |
| 2 | Joining               | Vacuum Brazing<br>Diffusion Bonding<br>Electron beam welding                                                                     | Klystron, RFQ, SLED, RF CAVITY, Waveguide, SIC Loader, Beam line Vacuum Component (Feedthrough, Valve) SRF CAVITY, Rocket Engine   |
| 3 | Cryogenic             | Cryogenic system design (P&ID) Heat transfer analysis Cryogenic system manufacturing Cryomodule accelerator design & fabrication | Cryomodule, Cryo component, Valve & Distribution box,<br>Cryogenic transfer line, Heat-exchanger, Cryogenic system-<br>integration |
| 4 | Surface<br>Treatment  | Cleanning, Degreasing,<br>BCP, Electrical polishing                                                                              | OFC, STS, Fe, Ceramic, Glass, kovar,<br>Brazing alloy, Nb, SRF Cavity, Rocket Engine                                               |
| 5 | Plating               | Accelerator Part Cu/Ni Plating                                                                                                   | DTL (Φ 600 x 2500L), Waveguide , Rocket Engine                                                                                     |
| 6 | Material              | Bonding(Brazing, Diffusion) Welding(Tig, E-beam welding) Microstructure, Mechanical Property                                     | Klystron, SLED, Beam Line<br>Vacuum chamber, SRF Cavity<br>PFC, Insulator, Rocket Engine                                           |
| 7 | Heat<br>Treatment     | OFHC, STS Heat Treatment<br>(Forging, HIP) Analysis<br>Powder Metallugy                                                          | RF & Vacuum Component Outgassing<br>CuCr, W Sintering Material, Insulator, Rocket Engine                                           |
| 8 | Analysis              | RF, Fluid, Cooling, Stress, Electrical                                                                                           | Accelerator Component, Nuclear Fusion                                                                                              |
| 9 | System<br>Integration | System Integration design, System Interfacing & Control                                                                          | Cryogenic system integration BeamLine System, Cryomodule Plasma system, High Power Supply                                          |



#### **Current Business Scope**

Accelerator

Cryogenic

Plasma Application

Aerospace

Vacuum System

Electric Power

Photon Accelerator



Cryo-plant



Nuclear Fusion



Rocket Engine



Vacuum System



Semiconductor

High Power Breaker



Proton Accelerator



Cryomodule



Radioactive Treatment



Test Facility



Vacuum Gate valve



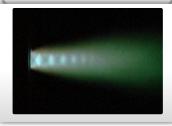
Power Distribution

Insulation



VI






Heavy Ion Accelerator



Cooling system

Plasma Torch

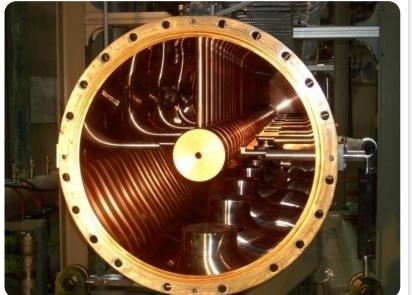




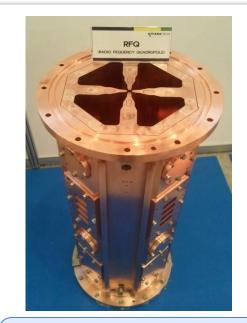
H.P Oxidizer Piping



# Main Business (Project) Participation - Experience -




**KOMAC – 350MHz, 100MeV Proton Accelerator including RFQ (2003 ~ 2010)** 


VITZROTECH developed & manufactured Linear Proton Accelerator (100MeV) thirdly after USA & Japan, also participate in photon & heavy ion accelerator

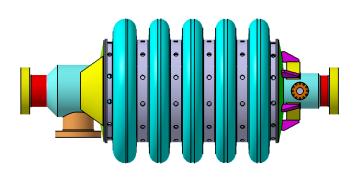


**Linear Proton Accelerator** (RFQ, DTL, MEBT etc)

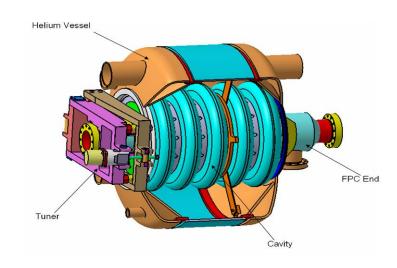


**DTL** (Drift Tube Linear Accelerator)

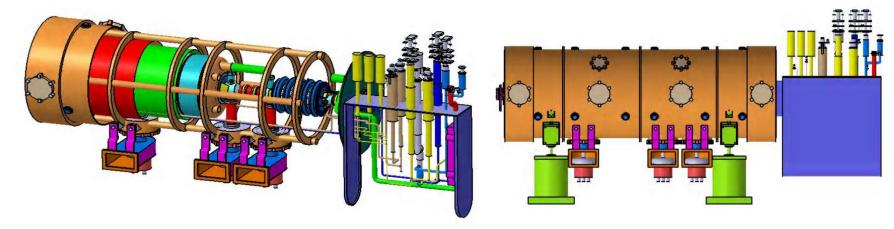



#### **RFQ**

- Frequency : 350MHz


- Vacuum : Less than 5 x 10<sup>-10</sup>Torr




#### SRF Cavity for Proton Accelerator



Five-cell elliptical cavity



**Helium vessel** 



Three cavities per one cryomodule



O Copper Cavity – 700 MHz

#### **Prototype A**

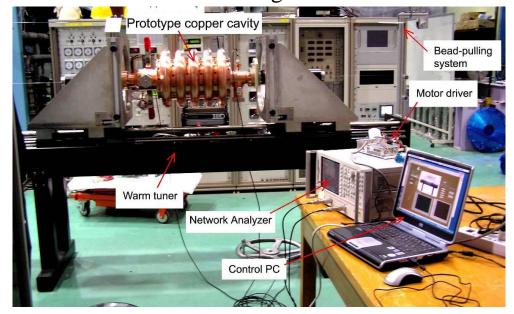


#### **Prototype B**

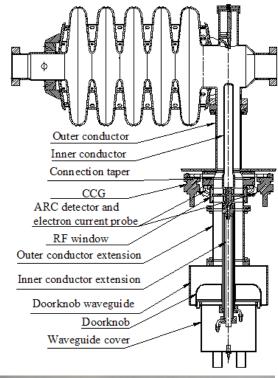


#### Used for

- RF properties measurement
- Establishment of fabrication procedure
- Testing cavity dies and fixtures
- Testing dumbbell tuning procedure
- Testing warm tuner


#### Used for

- Design confirmation
- RF measurement confirmation
- Production procedure check


# Tuning of RF Cavity



Dumbbell tuning method



Field flatness measurement and warm tuning



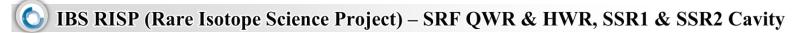


FPC prototype



#### Superconducting RF Cavity & Cryomodule




Frequency measurement



Five Cell Superconducting RF Cavity



Cryostat for Vertical Test



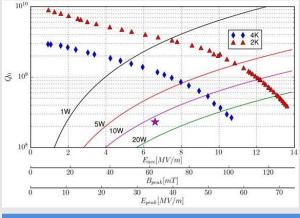
#### Design & Fabrication











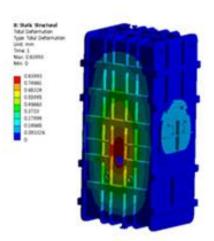


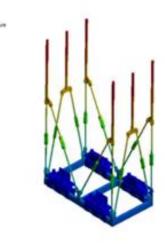



#### **Core Technology**

- 1. Design & Analysis Engineering
- 2. Precision manufacturing technology for Nb Cavity
- 3. Precision EBW technology
- 4. BCP surface treatment & HPR technology
- 5. RF Test & Tuning technology
- 6. 10 Class Clean Room Process Technology




| Specification                                  | QWR     | HWR     |
|------------------------------------------------|---------|---------|
| Total Length [mm]                              | 1,030   | 1,046   |
| Operating Frequency [MHz]                      | 81.25   | 162.5   |
| β                                              | 0.047   | 0.12    |
| Vacc [MV]                                      | 1.1     | 1.4     |
| Eacc [MV/m]                                    | 6.6     | 6       |
| Design electrical surface field (Epeak) [MV/m] | 35      | 35      |
| Design magnetic surface field (Bpeak) [mT]     | 62      | 52      |
| Qo/10 <sup>8</sup>                             | 2.3     | 10      |
| Temperature [K]                                | 4       | 2       |
| Flange material / type                         | 316L/CF | 316L/CF |


- (C) IBS RISP (Rare Isotope Science Project) SRF QWR & HWR Cryomodule, SSR Cryomodule
- > Design & Fabrication for QWR / HWR1 / HWR2 / SSR2 Cryomodule

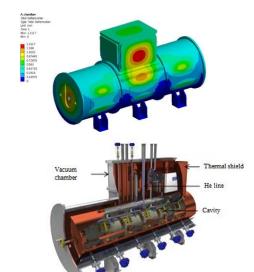











QWR Cryomodule

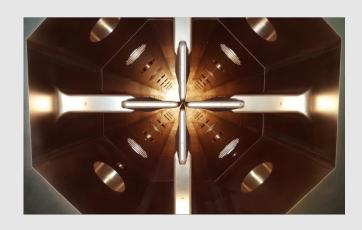
HWR 1 Cryomodule

HWR 2 Cryomodule



SSR 2 Cryomodule




#### **Core Technology**


- 1. Analysis & Design technology for large sized Cryomodule
- 2. Design & Manufacturing technology for Cryogenic Vacuum Chamber
- 3. Precision alignment technology of Beam Line
- 4. Precise assembly technology under cleanliness

# **(b)** IBS RISP (Rare Isotope Science Project) – Radio Frequency Quadrupole

Max Power: 100 kW (CW)Frequency: 81.25 MHz

#### Vitzrotech Designed, fabricated, supplied and installed whole sets of RFQ for IBS RAON Project







# O Power Coupler for MEBT & Prototype RFQ

Max Power: 30 kWFrequency: 81.25 MHz



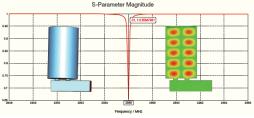


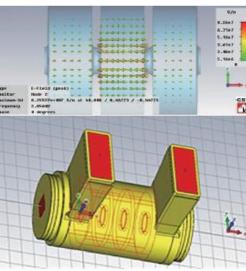




# MEBT Buncher normal conducting cavity

Max Power: 30 kWFrequency: 81.25 MHz

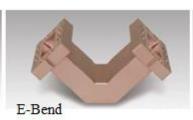




# **(0)**

#### PAL 4th Generation XFEL - Accelerating Column & Waveguide Components

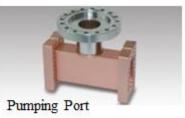


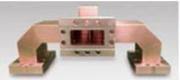
- ➤ Vitzrotech had participated in 4<sup>th</sup> Generation PAL XFEL
- Designed, Analyzed, Fabricated, Supplied, Installed
   Accelerator Columns
   [From Engineering to Installation]
- ➤ Fabricated, Supplied, Installed whole quantities of Waveguide components and SLED Cavity
- Fabricated, Supplied, Installed Beam Line Systems






#### **Waveguide Component**

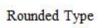












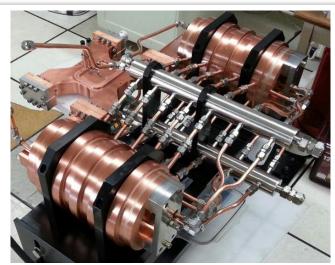


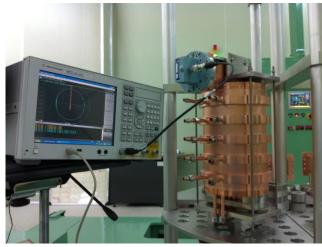







Twisted Type





Rounded Type (Cooling)



Straight (Cooling)

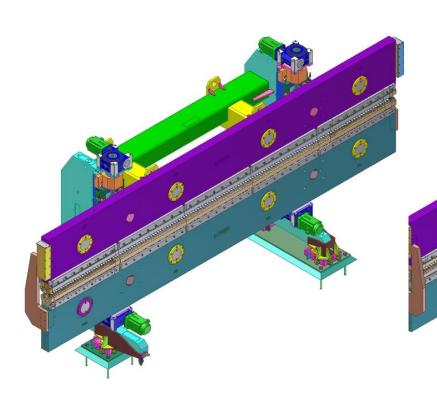
#### **O** PAL 4th Generation XFEL – SLED Cavity





RF Inspection by Network Analyzer

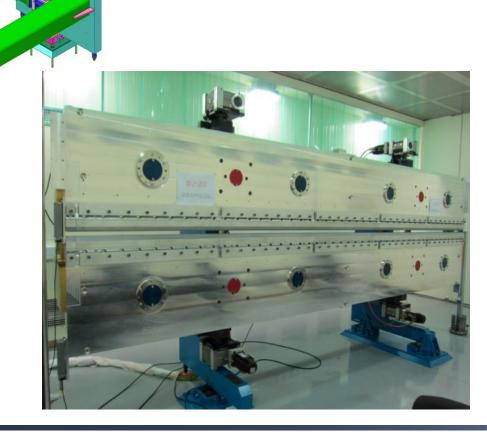
#### • Mechanical Specification


| Parameter                    | Value    |
|------------------------------|----------|
| Power Divider Length[mm]     | 380      |
| Vacuum Leak Rate [Pa.m³/sec] | ≤1.3E-11 |

#### • Electrical Specification

| Parameter                       | Value        |
|---------------------------------|--------------|
| Unloaded Q                      | >95,000      |
| Coupling Coefficient            | $5.0\pm0.1$  |
| Cavity mode                     | TE 0,1,5     |
| Operating Freq.[MHz]            | 2,856        |
| Operating Temp.[°C]             | $30 \pm 0.1$ |
| Maximum Peak<br>RF Power[MW]    | 320          |
| Maximum average<br>RF power[kW] | ≤23          |
| Detune                          | Enable       |




#### O PAL 4th Generation XFEL – Undulator



#### Specification

➤ Length: 5 m

➤ Gap Accuracy: 0.001 mm ➤ Magnetic Force : 100 kN





#### PAL 4th Generation XFEL – HXR & SXR Beam Line







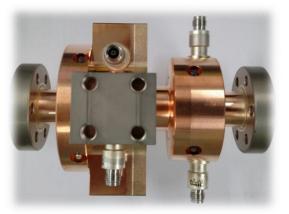


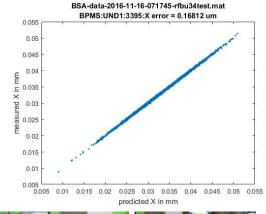

#### **Core Technology**

- 1. Design Engineering
- 2. Surface machining of in-vacuum side
- 3. Cleaning for UHV Component including acid polish
- 4. Bake-out
- 5. Buffing & Horning
- 6. Precision assembly and brazing
- 7. Leak Test & RF Test



#### PAL 4th Generation XFEL – Other Ultra High Vacuum Beam Line Component & Device

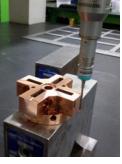




#### **Core Technology**

- 1. Design Engineering
- 2. Surface machining of in-vacuum side
- 3. Cleaning for UHV Component including acid polish
- 4. Bake-out
- 5. Buffing & Horning
- 6. Precision assembly and brazing
- 7. Leak Test & RF Test

# SLAC LCLS-II Project - X-Band Cavity RF BPM

> Vitzrotech manufactured and supplied X-Band RF BPM (Beam Position Monitor) for SLAC LCLS-II with core technologies such as precision machining, precision joining (Brazing), precision assembly and Tuning














#### **Core Technology**

- 1. RF Analysis, Design (CST)
- 2. Precision Machining (Mirror surface)
- 3. Surface Treatment for Ultra High Vacuum Component
- 4. Ultra Precision Assembly & Brazing (Feedthrough + Cavity Body)
- 5. RF Test & Tuning

#### • Dipole Cavity

| Parameter                           | Value      |
|-------------------------------------|------------|
| Nominal Frequency TM <sup>110</sup> | 11.424 GHz |
| Tolerance TM <sup>110</sup>         | +- 10 MHz  |
| Q <sup>L</sup> or Qtotal            | 2000~3000  |
| Cavity Coupling [β]                 | 1.9-2.1    |
| <b>Q</b> 0                          | 5800-9300  |
| Qext                                | 2762-4894  |
| X/Y Cross Talk                      | < -20 dB   |
|                                     |            |

#### • Reference Cavity

| Parameter                           | Value      |
|-------------------------------------|------------|
| Nominal Frequency TM <sup>110</sup> | 11.424 GHz |
| Tolerance TM110                     | +- 10 MHz  |
| QL                                  | 2000~3000  |
| Cavity Coupling [β]                 | 1.9-2.1    |
| <b>Q</b> 0                          | 5800-9300  |
| Qext                                | 2762-4894  |

# SLAC LCLS-II Project - Stripline BPM

> Vitzrotech manufactured and supplied Stripline BPM for SLAC LCLS-II with core technologies such as precision machining, precision joining (Brazing), precision assembly and Tuning



**Small Aperture BPM** 



Linac BC1/BC2 SLA BPM



Vacuum Tube Assembly



#### **Core Technology**

- 1. RF Analysis, Design (CST)
- 2. Precision Machining (Mirror surface)
- 3. Surface Treatment for Ultra High Vacuum Component
- 4. Ultra Precision Assembly & Brazing (Feedthrough + Cavity Body)
- 5. RF Test & Tuning

| Parameter                             | Value                                 |
|---------------------------------------|---------------------------------------|
| Total Leak Rate                       | < 1 X 10 <sup>-10</sup> mbar*L/sec He |
| RGA ( > 44 amu)                       | < 1 X 10-10 Torr                      |
| Maximum Electrical Offset             | < 100 micron                          |
| Maximum Mechanical & Alignment Offset | < 100 micron                          |

# CERN – CLIC Project (X-Band)

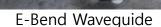
> Vitzrotech developed and supplied X-Band Directional Coupler and High Power Load for CERN CLIC Project with precision machining, precision joining (Brazing), precision assembly and Tuning



**Directional Coupler** 

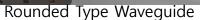


High Power Load


# © ELETTRA Synchrotron – FERMI Project

U-Shape Waveguide

> Vitzrotech participated in Elettra Synchrotron's FERMI Project and supplied several kinds of the Waveguide components



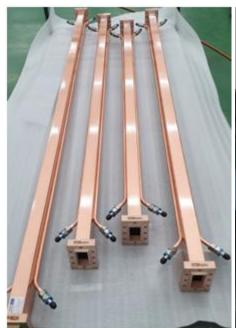






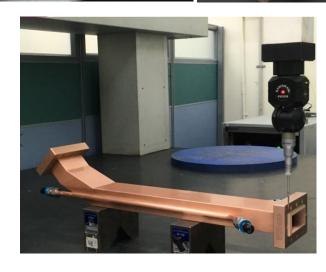







**OFFSET Waveguide** 


E-Bend Waveguide

- **ODIANO SERVICE Synchrotron LINAC Upgrade**
- > Vitzrotech supplied S-Band RF System for LINAC Upgrade of Diamond Light Source







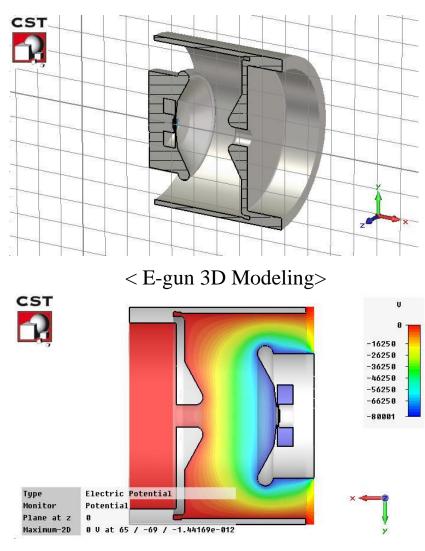








• Cathode Type: CPI Eimac Y-845


• Emission Area: 0.5 cm<sup>2</sup>

• Cathode Size: 8 mm

• Beam Voltage: 80 kV

• Max. Current: 1.25 A

• Routine Operation Current: 1.0 A



< E-field Simulation>



#### **PLS-II Beamline System**

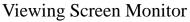
Vacuum, Diagnostics, Cooling System (LCW), Control System, etc

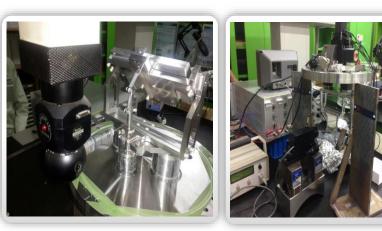




PLS-II PTL Beam line

Screen monitor, window, Slit, etc Vacuum : Less than  $1 \times 10$ -10Torr PLS-II Front-end Beam line


Photon shutter, Movable mask etc Vacuum: Less than  $1 \times 10$ -10Torr


# **(C)**

#### **Beam Diagnostics & Optical Device**

- Fabrication / Performance test / Installation of Beamline diagnostic device for PLS-II & XFEL
- Fabrication / Performance test / Installation of Optical device for PLS-II & XFEL

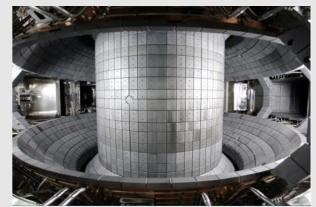




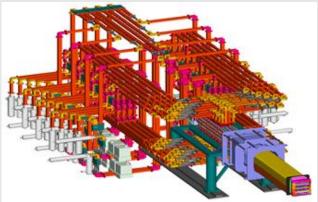


Viewing Screen Monitor

#### Beam Diagnostics


- Screen monitor, Wire Scanner, 4Axis Slit.,etc
- Accuracy: <10μm
- Vacuum : Less than  $1 \times 10^{-10}$ Torr

#### Beam Optical Device


- IR beam line mirror & Be Lens manipulator
- Accuracy : <5µm
- Vacuum : Less than  $1 \times 10^{-10}$ Torr

# **Nuclear Fusion Project - KSTAR**

Vitzrotech has been participating in Nuclear Fusion Business for KSTAR & ITER through core technologies such as design & analysis engineering, precision machining, precision joining (Brazing, EBW), precision assembly, alignment and test

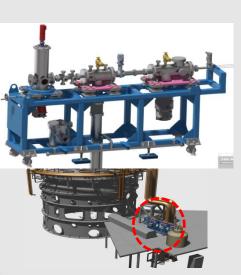


Plasma Facing Component (PFC)



5GHz LHCD Power Divider Network & Antenna System

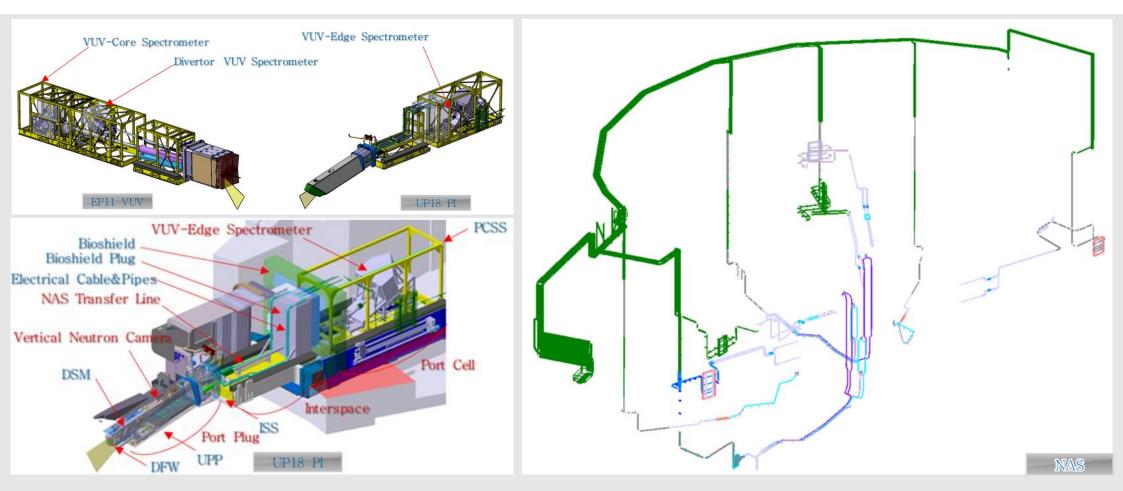



Fly-wheel Generator



NBI-II (Neutral Beam Injection) Heating & Beam line System

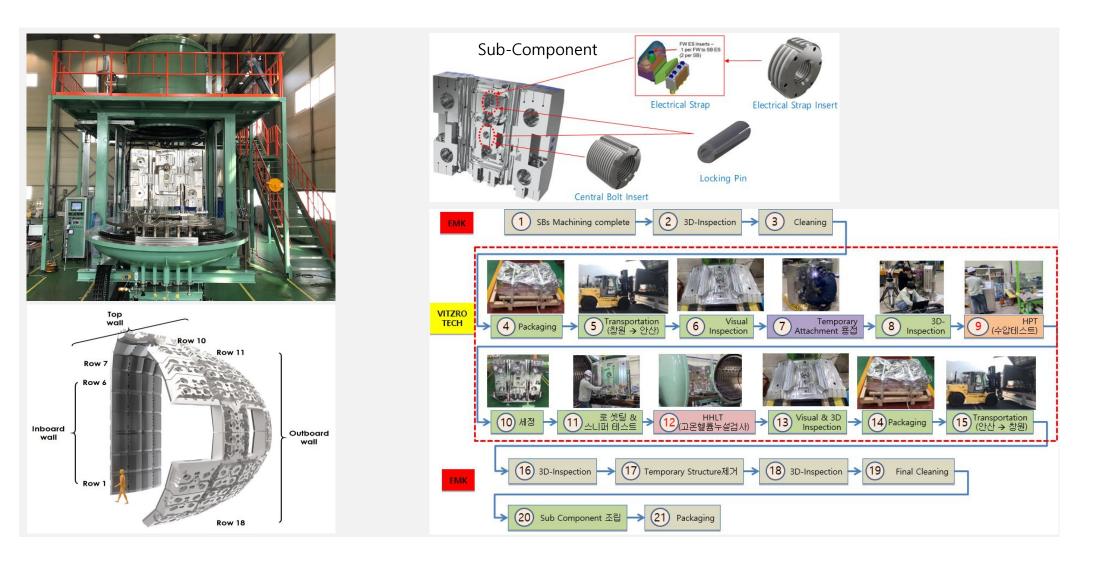



Ion Source



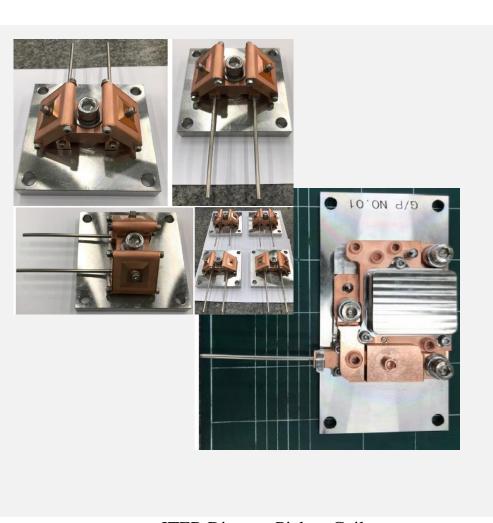
Pellet Injector

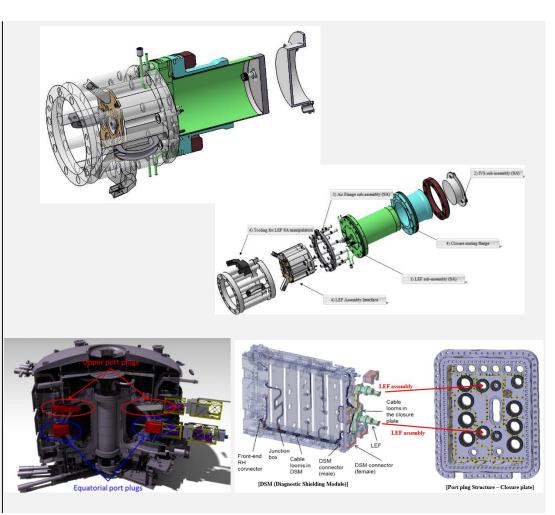
# **ONUCLEAR FUSION Project – ITER**


➤ Vitzrotech is currently performing ITER Projects (K.O & I.O) with core technologies such as design & analysis engineering, precision machining, precision joining (Brazing, EBW), precision assembly, alignment and test



Final Design for ITER Diagnostics


# Nuclear Fusion Project – ITER

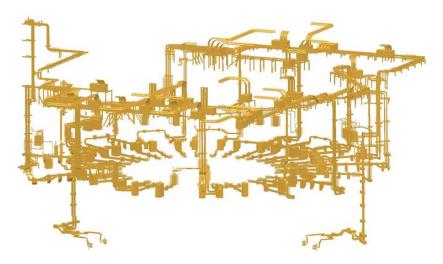

> Factory Acceptance Test & Manufacturing Sub-component



## Nuclear Fusion Project – ITER

> ITER Diagnostics Equipment – R&D



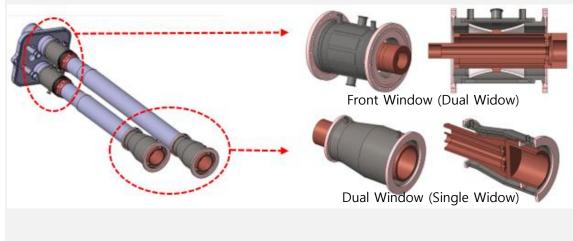


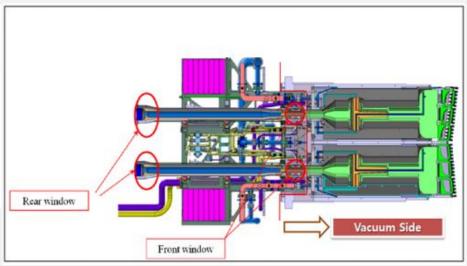

ITER Divertor Pickup Coils

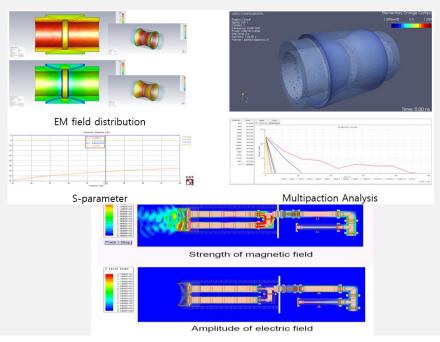
LEVI Electrical Feedthrough

## Nuclear Fusion Project – ITER IVC BUSBAR

> Design, Qualification, Manufacture of ITER In Vessel Coil BUSBAR





ITER IVC BUSBAR SYSTEM (Layout)

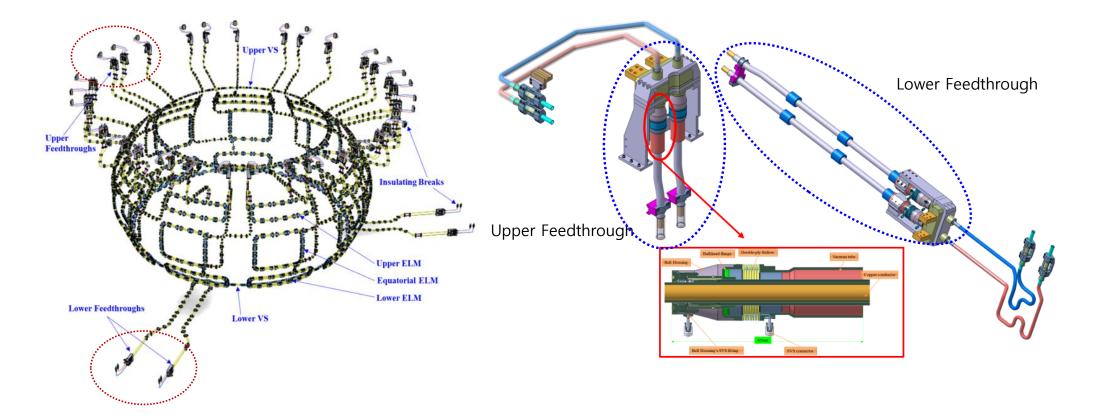



## Nuclear Fusion Project – ITER ICRF Window

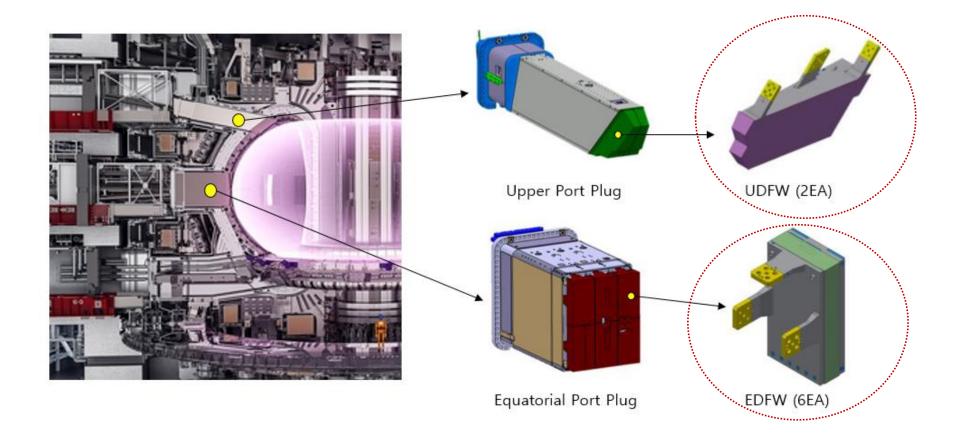
> Design, Qualification, Prototyping, Series Production of ITER ICRF Window





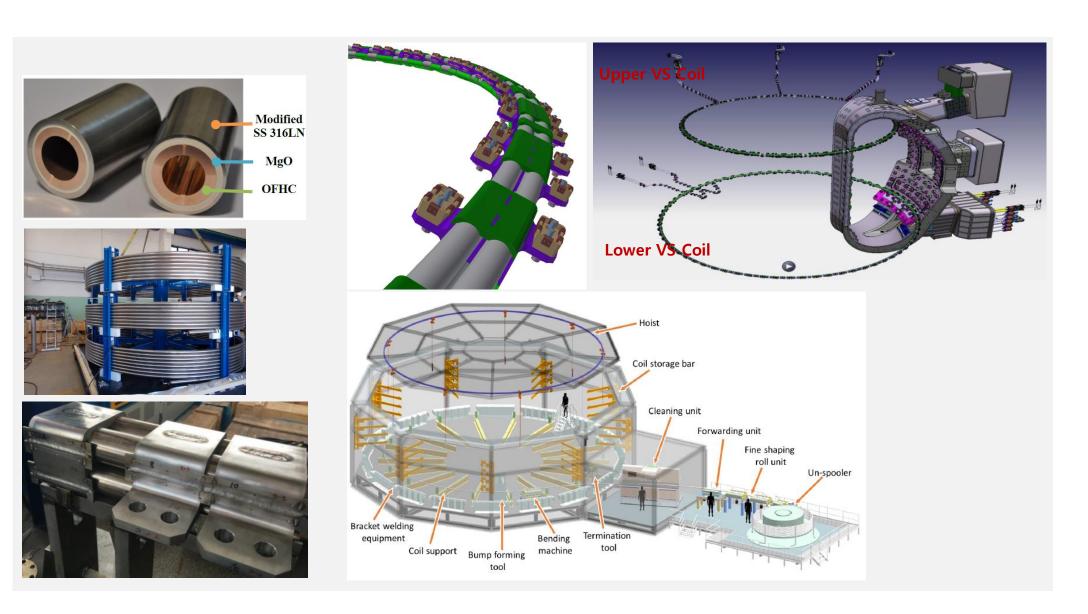






KSTAR ICRF Antenna [Vitzrotech]

## Nuclear Fusion Project – ITER IVC Feedthrough

> Design, Qualification, Prototyping, Series Production of ITER ICRF Window (UPR Assy 5 Set, LWR Assy 32 Set + 2 feedthrough)




- Nuclear Fusion Project ITER Diagnostic First Wall (DFW)
- ➤ Manufacturing Upper DFW : 28 Set
- Manufacturing Equatorial DFW: 54 Set





Nuclear Fusion Project – ITER In-Vessel Vertical Stability Coils Prototyping, Manufacturing and Installation



## **6** Gate Valve

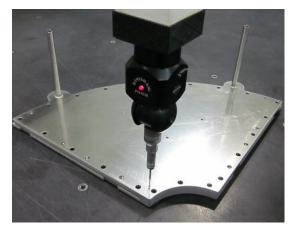
> Vitzrotech is manufacturing the Gate Valve through vacuum technology and supplying to Samsung Electronics and Hynix.

## **Non-Semiconductor**



- **■** Circular Gate Valve
- Rectangular Gate Valve
- Angle Valve




- Auto Bypass Valve
- **■** Auto Protection Valve
- Controllers

## **Semiconductor**





**Heater Block** 



**Cooling Plate** 

## **O** Plasma Business


> Vitzrotech has a lot of know-how and technologies for plasma through continuous R&D and also Vitzro is applying and expanding these to the application business like Waste-disposal equipment, Radioactive-waste disposal facility, Gas energy recovery plant.



Plasma Torch

❖ Temperature : 4000K

• Power class: 30kW, 200kW, 300kWclass





Radioactive-waste disposal facility

Gas Energy Recovery Plant

## Aerospace Business (Rocket Combustion Chamber) – with Korean Aerospace Research Institute

- Vitzrotech has been manufacturing the main equipments for Liquid Rocket Engine and participated in Korean Aerospace Projects through core technologies such as Design engineering, Precision machining, Special Bonding and **Hydraulics examination test**
- Vitzro's Rocket combustion chambers, Gas generators and Heat exchanging exhaust systems were verified for the performance at Naro Space Center in Korea



**Combustion Chamber** (For 7Ton Grade)



**Combustion Chamber** (For 75Ton Grade)



**Combustion Chamber** (For 85Ton Grade)







**Actual Test Image** 



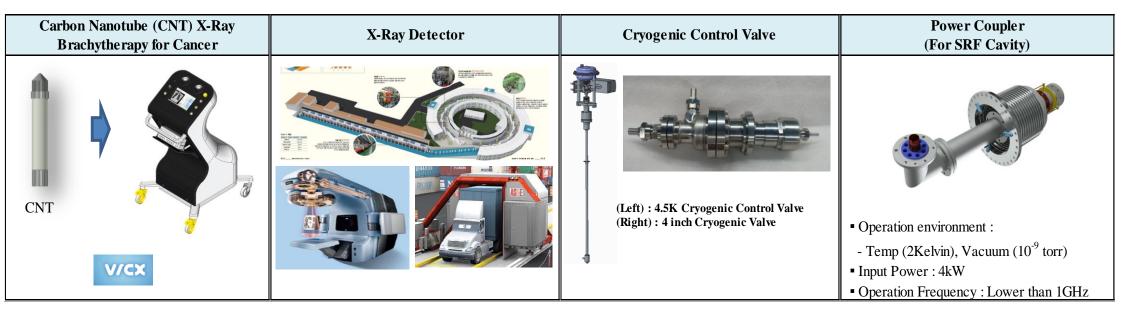
1 & 2 Stage – Gas Generator



3 Stage – Gas Generator



## IV R&D Status


## 4. R&D Status



## R&D Task based on the Experience in Accelerator & Nuclear Fusion Field

> Vitzrotech had participated and performed a lot of big projects in field of Accelerator & Nuclear Fusion. On the basis of these valuable experiences, Vitzrotech has been performing an R&D such as Medical Therapy Device, Small Sized Accelerator for Inspection, Cryogenic Parts, Aerospace Equipment and Defense Part, etc. through acquired Know-how and technology by performing Accelerator & Nuclear Fusion Projects.

## Main R&D Product





# Facility & Certificate

## Manufacturing Facility







**Brazing Furnace** 

E-beam Welder(150kV)

**Cleanroom for Storage** 



Machining(5 axis)



Clean Room(10000 class)



Clean Room(10 class)



**Chemical Treatment (18M\Q)** 



## Manufacturing Facility







**BCP** 

**HPR** 

**Particle Counter Handy** 







**Particle Counter Fix** 

**Ion Gun** 

**Tools for 10 Class Clean room** 



## **Inspection Facility**









Microscope

**3D Measurement** 

Leak Detector (He)

**Laser Tracker** 









**Water Flow Tester** 

**He Pressure Test** 

**Network Analyzer** 

**RGA** 

## **Certification**

| Certification | Certified field             | Date       | Expiration | Authority                      |
|---------------|-----------------------------|------------|------------|--------------------------------|
| ISO9001       | Quality management system   | 2018.05.23 | 2024.05.22 | KPC                            |
| ISO14001      | Environmental management    | 2018.05.23 | 2024.05.22 | KPC                            |
| ASME          | ASME U, U2, PP              | 2014.12.01 | 2023.11.17 | ASME                           |
| KEPIC-EN      | Electric Power Industry     | 2017.06.07 | 2023.06.06 | Korea Electric Association     |
| INNO-BIZ      | Technical Innovation        | 2014.12.15 | -          | Gyeonggi SMBA                  |
| KS C 4613     | Leakage circuit breaker     | 2009.09.16 | -          | KSA                            |
| KS C 8321     | Distributing breaker        | 2009.09.16 | -          | KSA                            |
| KS C 4620     | Low voltage circuit breaker | 2011.02.09 | -          | KSA                            |
| V Check Mark  | V Check Mark in KAS         | 2014.10.31 | -          | KESCO                          |
| Q-Mark        | Panel (High, Low-tension)   | 2012.06.05 | -          | KTC                            |
| UL            | МССВ                        | 2012.07.09 | -          | Underwriters Laboratories Inc. |











**ISO 9001** 

ISO 14001

**ASME U STAMP** 

ASME – U2

**ASME PP** 

## **VITZRO** TECH

Thank you!